The Kinematics and Dynamics of a Humanoid Robot Arm for the FIRA Robot Games

Kinematics

Kinematics is the study of motion with relation to just the time variant properties of a system, without regard to the forces which are required to produce that motion.

For the robot arm, it is the analytical relationship between the joint positions and the end-effector position and orientation.

The Ball's Trajectory

After the ball is thrown, it can be modeled as a particle acting under gravity, using projectile trajectory maths and the equations of motion. This finds the throwing conditions in Cartesian coordinates.

Inverse Kinematics

Inverse kinematics finds the joint angles and positions required to place the end effector in the desired throwing position (x_y).

- Using the Cosine Law: $a^2 = b^2 + c^2 - 2bc \cdot \cos\theta$
- Using the Sine Law: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Forward Kinematics

Forward kinematics calculates the linear position and orientation of the end-effector from the joint positions. It relates the angular positions to the Cartesian positions:

$$(x, y) = ((x_1 + x_2 \cdot \sin\theta_2), (y_1 + x_2 \cdot \cos\theta_2), (y_1 - x_2 \cdot \sin\theta_2 - \frac{x_2}{2} \cdot \cos\theta_2))$$

The joint's angular speed from the Cartesian speed is found using the Jacobian mathematical method.

Dynamics

Dynamics is the relationship between the motion of an object and the motion’s cause, where mass and thus forces, as well as time-variant properties are studied.

The dynamics of a robotic system are made up of inertia effects and the work the system is doing.

The Generic Dynamic Equation:

\[M(a) \cdot \ddot{a} + \tau = \tau_D \]

- \(M(a) \) is the vector of the robot's joint variables
- \(\tau \) is the actuator torque/force
- \(\tau_D \) is the sum of forces and moment (net torque)
- \(\ddot{a} \) is the Coriolis and centrifugal acceleration
- \(\dot{a} \) is the gravity vector

The dynamic matrices were derived using the Lagrange-Taylor method.

Trajectory Planning

Trajectory planning is a method of making a manipulator move from one position to another in a smooth and controlled manner, by giving each joint a smooth function of time to follow. The trajectory is described by several points through which a polynomial is fitted.

Nonlinear Controllers

The robot arm needs a controller to relate the desired trajectory to the motors' torque. A controller is effectively the dynamical relationship between the system's output and its actuation.

A practical mechanical system usually has nonlinear dynamics due to the damping and friction effects of the natural environment. A nonlinear controller will linearize the dynamic equation.

Joint-Based Feedback Linearization Control

\[u_j = u_j(\dot{x}) - \frac{\partial x_j}{\partial x} \cdot \dot{x} + \frac{\partial x_j}{\partial \dot{x}} \cdot \ddot{x} + \frac{\partial x_j}{\partial \theta} \cdot \tau_j + \frac{\partial x_j}{\partial \dot{\theta}} \cdot \dot{\tau}_j \]

Cartesian Feedback Linearization Control

\[u_c = u_c(\dot{x}) - \frac{\partial x_c}{\partial x} \cdot \dot{x} + \frac{\partial x_c}{\partial \dot{x}} \cdot \ddot{x} + \frac{\partial x_c}{\partial \theta} \cdot \tau_c + \frac{\partial x_c}{\partial \dot{\theta}} \cdot \dot{\tau}_c \]

By: Claire Tobin
Supervisor: Dr. Guido Herrmann

University of Bristol
Department of Mechanical Engineering